Antiproton Stacking and Cooling

Paul Derwent

July 21, 2003

Parameter Goals

Goals

- > Average Stacking Rate 40x1010 pbars/hour
- > Stack at this rate for at least 15 hours
- > Final Stack Parameters
 - Size = 625×10^{10} pbars
 - Transverse emittance < 15
 —nm-mrad (95% normalized)
 - Longitudinal emittance < 50 eV-Sec

Inputs

- ➤ Collect 280×10⁶ antiprotons from the target every 2 seconds
 - Transverse emittance = 335 -mm-mrad (95% normalized)
 - Momentum Spread = 4%
 - Bunch lengths < 1.5 nS

Strategy

Present Run II Operations

- > Accumulator Core is the final repository for antiprotons
 - Bandwidth
 - Momentum aperture
 - Stacktail gain slope
- > 1/N effect in stochastic cooling limits stack size to ~300×1010 pbars

Run II Upgrades

- > The Recycler is the final repository for antiprotons
- > Electron cooling in the Recycler greatly reduces the 1/N effect
 - · Larger average/peak stacking rate ratio
 - Larger stacks ~600x1010
- Accumulator Stacktail is optimized to handle larger flux by larger bandwidth and smaller gain slope
- Greatly reduced Accumulator core size is also a result of larger bandwidth and smaller gain slope
- Reduced Accumulator core size and high stacking rates require frequent and rapid transfers between the Accumulator and the Recycler

Debuncher Bunch Rotation

- > Exchange
 - Large Momentum spread of 4% (360 MeV)
 - Short bunches < 1.5 nS (95%)
- > For
 - Small momentum spread of 0.4% (36 MeV)
 - Coasting beam

Debuncher Cooling

- > System Configuration
 - Liquid Helium front end (T_{eff}=30K)
 - Bandwidth = 4-8 GHz Subdivided into 4 bands
 - · Available kicker power
 - 2400 Watts/ plane (transverse)
 - 4800 Watts (momentum)
- > Cooling Rate Specs.
 - Momentum: 36 MeV to 6 MeV in 1.9 Seconds
 - Transverse: 335

 -mm-mrad to 45

 -mm-mrad (95% normalized) in 1.9
 seconds

Accumulator Stacktail Cooling

- > Process
 - Beam is injected onto the Injection Orbit
 - · Beam is
 - Bunched with RF
 - Moved with RF to the Stacking Orbit
 - Debunched on Stacking orbit
 - Stacktail pushes and compresses beam to the Core orbit
 - Core Momentum system gathers beam from the Stacktail
 - Accumulator Transverse Core Cooling system cools the beam transversely in the Stacktail and Core

Accumulator Stacktail Cooling

> Specifications

- Injection pulse width: 6 MeV
- Stacktail:
 - Bandwidth = 2-6 GHz
 - Width = 42 MeV
 - Gain slope = 8 MeV (can handle 90x1010pbars/hr)
 - Power = 550W into 6400∏

Core momentum

- Bandwidth = 4-8 GHz
- Aperture = 9.6 MeV
- Gain slope = 5 MeV (can handle 90x1010pbars/hr)
- Stacksize = 34x10¹⁰pbars

Extraction

- Longitudinal emittance: 10eV-sec
- Transverse emittance: 10□-mm-mrad (95% normalized)
- Stacking interval: 30 minutes
- Transfer size: 22.5x10¹⁰pbars

- Recycler Electron Cooling
 - Fivery $\frac{1}{2}$ hour an injected batch of 22×10^{10} pbars in 10 eV-Sec and 10 \square -mm-mrad phase space is injected into the Recycler
 - Transfers between the Accumulator and the Recycler
 - Are done on "clock event"
 - » ~instantaneously
 - » No more mini-shot setup
 - A 50% dilution is assumed to occur on each transfer
 - » 15 eV-Sec and 15 □-mm-mrad phase space
 - Transverse stochastic pre-cooling of the injected batch
 - To bring the transverse emittance of the injected batch within the reach of the electron cooling
 - The injected batch is kept separate from the main "core" by barrier buckets
 - Transverse stochastic cooling systems are "gain gated"
 - » Low density injected batch fast stochastic cooling
 - » High density core slow stochastic cooling

Recycler Electron Cooling

- ➤ Every 1/2 hour, the previous injected batch is merged into the core with barrier bucket manipulations to make room for the new injected batch
- > The Recycler Core
 - Is cooled mainly with electron cooling in all 3 planes
 - Weak transverse stochastic cooling for high amplitude particles
 - Intra-beam scattering (IBS) is "shut-off"
 - Recycler
 - » operates below transition
 - » has low dispersion
 - » has smooth lattice functions
 - The Core is squeezed with barrier buckets so that it occupies only 20% of the machine circumference
 - The transverse emittance is cooled to less than 3□-mm-mrad (95% normalized) so that the beam temperature in all 3 planes is equal

Antiproton Stacking and Cooling Projects

- Accumulator Stacktail Upgrade
 - > Project Leader: Paul Derwent
 - Major Objectives: Upgrade the Stacktail system to handle 90x10¹⁰ pbars/hour
 - Increase bandwidth of the system to 2-6 GHz
 - Reduce gain slope ~10 MeV
- Rapid Antiproton transfers from the Accumulator to the Recycler
 - > Project Leader: Elvin Harms
 - > Major Objectives: Transfer Accumulator core to the Recycler
 - in less than 1 minute every 30 minutes
 - <50% emittance dilution
 - 95% transfer efficiency
- Electron Cooling in the Recycler
 - Project Leader: Sergei Nagaitsev
 - > Major Objectives: Install a 4.3 MV Pelletron in the Recycler
 - 500 mA of electron current
 - 20 meters of cooling section

Antiproton Stacking and Cooling Projects

WBS	Task	In Charge	Labor Est (\$K)	Labor Cont	M&S Est (\$K)	M&S Cont	Start
1.3.3	Pbar Stacking and Cooling	Paul Derwent	3,856	55%	2,256	46%	1/1/03
1.3.3.1	Stacking and Cooling Integration	Sergei Nagaitsev	447	20%	0	0%	3/3/03
1.3.3.2	Debuncher Cooling	Paul Derwent	22	60%	0	0%	3/1/03
1.3.3.3	Stacktail Cooling	Paul Derwent	746	40%	1,171	40%	3/1/03
1.3.3.3.1	Momentum	Paul Derwent	371	41%	1,004	40%	3/1/03
1.3.3.3.2	Betatron	Paul Derwent	375	40%	167	40%	3/3/03
1.3.3.4	Recycler Stacking and Cooling	S Nagaitsev	786	59%	0	0%	5/1/03
1.3.3.4.3	Measure Parameters and Develop Commissionir	§ Rlag aitsev	0	0%	0	0%	10/2/03
1.3.3.4.7	RR Beam Studies and Commissioning	S Nagaitsev	385	60%	0	0%	10/1/03
1.3.3.4.8	RR Vacuum Upgrade	S Nagaitsev	0	0%	0	0%	10/1/03
1.3.3.5	Electron Cooling	Sergei Nagaitsev	1,063	70%	568	48%	3/3/03
1.3.3.5.1	Commission Full Beamline	Sergei Nagaitsev	539	86%	55	77%	3/3/03
1.3.3.5.2	Design and procure components	Jerry Leibfritz/Serg	ei Nagai t96 \	42%	375	42%	9/1/03
1.3.3.5.3	Disassemble Wideband Facility	Jerry Leibfritz/Serg	ei Nagait ŝ €v	57%	22	58%	2/2/04
1.3.3.5.4	Transport Components to MI-31	Jerry Leibfritz	17	60%	24	60%	3/1/04
1.3.3.5.5	Install Pelletron at MI-31	Jerry Leibfritz/Serg	ei Nagait 5 ₹∖	60%	37	60%	2/2/04
1.3.3.5.6	Commission Pelletron	Sergei Nagaitsev	38	60%	0	0%	8/11/04
1.3.3.5.7	Install E-Cool Transferline	Jerry Leibfritz	14	40%	23	40%	5/3/04
1.3.3.5.8	Modifications to MI/RR	Jerry Leibfritz	9	45%	15	52%	5/1/03
1.3.3.5.9	Install Cooling Section in RR	Jerry Leibfritz/Serg	ei Nagait ŝe v	48%	17	40%	6/28/04
1.3.3.5.10	Commission Cooling Section	Sergei Nagaitsev	30	86%	0	0%	8/23/04
1.3.3.5.11	Commission Electron Cooling	Sergei Nagaitsev	101	60%	0	0%	9/24/04
1.3.3.6	Rapid Transfers	E Harms	792	64%	517	60%	1/1/03
1.3.3.6.1	Document Fast Transfer scheme	E Harms	1	40%	0	0%	4/1/03
1.3.3.6.2	Beam Line Regulation	E Harms	25	53%	12	40%	11/17/03
1.3.3.6.3	RT Software	E Harms	249	75%	0	0%	11/17/03
1.3.3.6.4	Oscillation Feedback and Control	E Harms	108	59%	0	0%	1/1/03
1.3.3.6.5	Diagnostics	E Harms	393	60%	505	60%	1/16/04
1.3.3.6.6	Commission Fast Transfers	E Harms	16	60%	0	0%	3/4/05

Accumulator Stacktail Upgrade Project Strategy

Design margin for flux = 90x10¹⁰pbars/hour

$$\Box_{o} = \frac{ |\Box| W^{2} E_{d} |}{f_{o} \Box pc \ln |f_{max}|}$$

- The best way to increase flux is to increase the bandwidth
- Energy Aperture and Stability
 - > Would like energy aperture as big as possible to get a large core density
 - For system stability, operate at frequencies where Schottky bands do not overlap
 - > Strategies
 - Reduce []
 - Increases 🛘 functions decreases aperture
 - Increases intra-beam scattering heating
 - Reduce momentum aperture of cooling system
 - · Core Momentum system with higher bandwidth
 - Energy aperture of core is limited by "bad" mixing between pickup and kicker at high frequencies

Accumulator Stacktail Upgrade Project Strategy

- Core Density and Stacking Interval
 - Particles to be transferred must be inside desired Recycler longitudinal emittance
 - Desire long stacking interval
 - Small Debuncher energy spread $\Box E_{bd}$

 - Small characteristic energy slope (E_d)

Stacktail Bandwidth	Core Bandwidth	E_{ds}	E_{dc}	$\Box E_s + \Box E_{bd}$	$\Box E_{c}$	Fraction Unstacked
(GHz)	(GHz)	(MeV)	(MeV)	(MeV)	(MeV)	(%)
2-4	4-8	20	5	77.4	9.6	50
2-6	4-8	8	5	48.4	9.6	66
2-6	2-6	8	8	45.2	12.8	55
4-8	4-8	5	5	33.9	9.6	72

4-8 GHz

Rapid Transfers Project Strategy

Transfers are done on clock event

- > Halt to stacking
- Accumulator RF Extraction
- > Transfer to the Recycler
- Recycler Barrier Bucket manipulation
- > Return to stacking
- P1, P2, and AP1 power supplies ramp on every clock event
 - > No more bi-modal operation of AP1
- Fast Feedback
 - Random oscillations are corrected by injection dampers in the Main Injector and Recycler
 - 1 kV in ~80 turns will damp 2□-mm-mrad (95% normalized) oscillation
 - > 8 GeV transfer line magnet power supplies regulation specification to 2 -mm-mrad

Slow Feed-Forward

- > Transfer line reference orbit
 - · Transfer line BPM system
- > Injection oscillations
 - Turn-by-turn info provided by damper systems.

Recycler Stochastic Pre-cooling and Vacuum

Needed to transversely pre-cool 22x10¹ºpbars injected from the Accumulator for ¹/₂ hour to bring the transverse emittance within the electron beam

Evolution of the injected batch with 22x10¹⁰ pbars using a Q=1
 2-4 GHz Transverse
 Stochastic Cooling system,
 7□-mm-mrad/hr vacuum growth rate

Recycler Electron Cooling Project Strategy

- Decide on whether to do longitudinal cooling and/or betatron cooling
 - ➤ Longitudinal cooling rate independent of [] function
 - · Important for the Recycler
 - ightharpoonup Transverse cooling rate proportional to $\Box^{1/2}$
 - · Not as important for the Recycler
- Design for minimum angular spread in electron beam
 - Cooling section solenoid field quality
 - > Aberrations in the beamline
 - > Stability of the antiproton orbit
 - > Stability of the electron optics
 - Emittance and space charge
 - > Stray magnetic fields
- Decide on reasonable emittance range for optimum cooling

$$\sqrt{\frac{\square_{5\%}}{6\square}} \ \square \ \square_{\text{electron}_{\text{spread}}}$$

$$r^2 = \square_{95\%}$$

Design electron beam size

Recycler Electron Cooling Project Strategy

- Emphasis on longitudinal cooling
- Electron Beam Current = 500 mA
- Angular spread of electron beam = 0.22 mrad
- Design cooling for transverse emittance of 3□-mm-mrad (normalized) with Electron beam size = 3 mm with □=22m
- Longitudinal Cooling time needed = 25 minutes

Key Parameters

Parameter	Value	Unit
Average Stacking rate	40	x10 ¹⁰ per hour
Peak Stacking rate	45	x10 ¹⁰ ner hour
Number of particles injected into the Debuncher	280	$x10^{6}$
Debuncher transverse aperture	335	□-mm-mrad
Antiproton production cycle time	2	Secs
Maximum bunch length on target	1.5	nSecs.
Debuncher momentum aperture	4	%
Debuncher momentum cooling aperture	0.4	%
Debuncher final transverse emittance	45	□-mm-mrad
Debuncher final momentum spread	6	MeV
Debuncher transverse cooling common mode rejection	1.5	mm
Debuncher transverse cooling phase imbalance	3	degrees
Debuncher transverse cooling delay imbalance	1.4	pS
Debuncher momentum notch filter delay tolerance	1	pS
Debuncher momentum cooling notch filter dispersion	2.5	degrees
Debuncher to Accumulator transfer efficiency	95	%
Accumulator Stacktail Momentum bandwidth	2-6	GHz
Accumulator Core Momentum bandwidth	4-8	GHz
Accumulator Stacktail Momentum energy slope	8	MeV
Accumulator Stacktail Power	625	Watts
Accumulator Stacktail 2-6 GHz kicker impedance	6400	
Accumulator Core Momentum energy slope	5	Mev
Accumulator Core Momentum cooling aperture	9.6	MeV
Accumulator Momentum cooling aperture	58	MeV

Key Parameters

Parameter	Value	Unit
Accumulator Momentum cooling aperture	58	MeV
Accumulator to Recycler transfer longitudinal emittance	10	eV-Sec
Accumulator to Recycler transfer interval	30	minutes
Number of particles extracted from the Accumulator per transfer	24	$x10^{10}$
Accumulator to Recycler transfer time	1	minutes
Accumulator to Recycler transfer efficiency	95	%
Accumulator core transverse emittance	10	□-mm-mrad
Recycler transverse emittance injection dilution	50	%
Recycler longitudinal emittance injection dilution	50	%
Recycler transverse Stochastic Cooling Bandwidth	>1	GHz
Recycler Transverse Stochastic cooling Center Frequency	3	GHz
Maximum Recycler Transverse emittance Growth Rate	7	□-mm-mrad/hr
Peak Stack in Recycler	620	$x10^{10}$
Transverse emittance of antiprotons extracted from Recycler	10	□-mm-mrad
Total Longitudinal emittance of antiprotons extracted from Recycler	50	eV-Sec
Number of bunches extracted from the Recycler	36	
Minimum longitudinal cooling rate of Electron Cooling	55	eV-Sec/hour
Minimum Electron Cooling Current	250	mA
Electron Beam alignment tolerance	0.1	mrad

Key Parameter Comparison

Parameter	Value	Value	Value	Unit
	FY06	FY04	Now	
Average Stacking rate	40	12	8.5	x10 ¹⁰ per hour
Peak Stacking rate	45	18	13	x10 ¹⁰ per hour
Beam on Target	8	5	4.7	$x10^{12}$
Number of particles injected into the Debuncher	280	100	90	$x10^{6}$
Debuncher transverse aperture	335	145	145	□-mm-mrad
Antiproton production cycle time	2	1.7	2.2	Secs
Maximum bunch length on target	1.5	1.3	1.3	nSecs.
Debuncher momentum aperture	4	3.7	3.7	%
Debuncher momentum cooling aperture	0.4	0.4	0.4	%
Debuncher final transverse emittance	45	45	45	□-mm-mrad
Debuncher final momentum spread	6	5	9	MeV
Debuncher transverse cooling common mode rejection	1.5	1	<1	mm
Debuncher transverse cooling phase imbalance	3	20	30	degrees
Debuncher transverse cooling delay imbalance	1.4	10	14	pS
Debuncher momentum notch filter delay tolerance	1	1	2-3	pS
Debuncher momentum cooling notch filter dispersion	8	10	20	degrees
Debuncher to Accumulator transfer efficiency	95	95	95	%
Accumulator Stacktail Momentum bandwidth	2-6	1.7-3.7	1.7-3.7	GHz

Key Parameter Comparison

Parameter	Value	Value	Value	Unit
	FY06	FY04	Now	
Accumulator Core Momentum bandwidth	4-8	4-7	2-4	GHz
Accumulator Stacktail Momentum energy slope	8	11	11	MeV
Accumulator Stacktail Power	625	280	250	Watts
Accumulator Stacktail 2-6 GHz kicker impedance	6400	6400	6400	
Accumulator Core Momentum energy slope	5	6	11	Mev
Accumulator Core Momentum cooling aperture	9.6	12	20	MeV
Accumulator Momentum cooling aperture	58	72	80	MeV
Accumulator to Recycler transfer longitudinal emittance	10	15	15	eV-Sec
Accumulator to Recycler transfer interval	30	180	180	minutes
Number of particles extracted from the Accumulator per transfer	24	24	25	$x10^{10}$
Accumulator to Recycler transfer time	1	15	60	minutes
Accumulator to Recycler transfer efficiency	95	90	70	%
Accumulator core transverse emittance	10	10	10	□-mm-mrad
Recycler transverse emittance injection dilution	50	50	>100	%
Recyler longitudinal emittance injection dilution	50	50	>100	%
Peak Stack in Recycler	620	200	80	$x10^{10}$
Transverse emittance of antiprotons		10	-	□-mm-mrad
Total Longitudinal emittance of antiprotons		50	100	eV-Sec
Transverse stochastic cooling time @ 100e10	0.7	0.7	-	hours

Antiproton Stacking and Cooling Tasks

WBS	Task	In Charge	Labor Est (\$K)	Labor Cont	M&S Est (\$K)	M&S Cont	Start
1.3.3	Pbar Stacking and Cooling	P. Derwent	3,856	55%	2,256	46%	1/1/03
1.3.3.1	Stacking and Cooling Integration	S. Nagaitsev	447	20%	0	0%	3/3/03
1.3.3.2	Debuncher Cooling	P. Derwent	22	60%	0	0%	3/1/03
1.3.3.3	Stacktail Cooling	P. Derwent	746	40%	1,171	40%	3/1/03
1.3.3.3.1	Momentum	P. Derwent	371	41%	1,004	40%	3/1/03
1.3.3.3.2	Betatron	P. Derwent	375	40%	167	40%	3/3/03
1.3.3.4	Recycler Stacking and Cooling	S. Nagaitsev	786	59%	0	0%	5/1/03
1.3.3.5	Electron Cooling	S. Nagaitsev	1,063	70%	568	48%	3/3/03
1.3.3.5.1	Commission Full Beamline	S. Nagaitsev	539	86%	55	77%	3/3/03
1.3.3.5.2	Design and procure components	J. Leibfritz/S. Naga	tsev 196	42%	375	42%	9/1/03
1.3.3.5.3	Disassemble Wideband Facility	J. Leibfritz/S. Naga	atsev 32	57%	22	58%	2/2/04
1.3.3.5.4	Transport Components to MI-31	J. Leibfritz	17	60%	24	60%	3/1/04
1.3.3.5.5	Install Pelletron at MI-31	J. Leibfritz/S. Naga	atsev 57	60%	37	60%	2/2/04
1.3.3.5.6	Commission Pelletron	S. Nagaitsev	38	60%	0	0%	8/11/04
1.3.3.5.7	Install E-Cool Transferline	J. Leibfritz	14	40%	23	40%	5/3/04
1.3.3.5.8	Modifications to MI/RR	J. Leibfritz	g	45%	15	52%	5/1/03
1.3.3.5.9	Install Cooling Section in RR	J. Leibfritz/S. Naga	atsev 30	48%	17	40%	6/28/04
1.3.3.5.10	Commission Cooling Section	S. Nagaitsev	30	86%	0	0%	8/23/04
1.3.3.5.11	Commission Electron Cooling	S. Nagaitsev	101	60%	0	0%	9/24/04
1.3.3.6	Rapid Transfers	E. Harms	792	64%	517	60%	1/1/03
1.3.3.6.1	Document Fast Transfer scheme	E. Harms	1	40%	0	0%	4/1/03
1.3.3.6.2	Beam Line Regulation	E. Harms	25	53%	12	40%	11/17/03
1.3.3.6.3	RT Software	E. Harms	249	75%	0	0%	11/17/03
1.3.3.6.4	Oscillation Feedback and Control	E. Harms	108	59%	0	0%	1/1/03
1.3.3.6.5	Diagnostics	E. Harms	393	60%	505	60%	1/16/04
1.3.3.6.6	Commission Fast Transfers	E. Harms	16	60%	0	0%	3/4/05

Antiproton Stacking and Cooling Milestones

1.3.3	Pbar Stacking and Cooling	P. Derwent	Date	
1.3.3.3.1.1.5	Review System Design: stacktail momentum (Milestone)	P. Derwent	1/5/04	С
1.3.3.3.1.2.4	Stacktail Reconfigured (option) (Milestone)	P. Derwent	8/10/04	С
1.3.3.3.1.9	Stacktail Momentum Operational (Milestone)	J. Spalding	11/17/05	Α
1.3.3.3.2.1.2	Review System Design: stacktail betatron (Milestone)	P. Derwent	11/28/03	В
1.3.3.3.2.8	Stacktail Betatron Operational (Milestone)	J. Spalding	11/17/05	Α
1.3.3.4.2	Commissioning Parameters Defined (Milestone)	S. Nagaitsev	10/1/03	С
1.3.3.4.4	Commissioning Plan Evaluation (Milestone)	S. Nagaitsev	11/14/03	В
1.3.6.2.2	Review: RR and Electron Cooling Commissioning Plan (M	illes Sopnaed ing	12/16/03	Α
1.3.6.2.3	Review: Phase 2-4 Transition Plan (Milestone)	J. Spalding	4/16/04	Α
1.3.3.4.5	RR Commissioned for Electron Cooling (Milestone)	J. Spalding	7/2/04	Α
1.3.3.5.1.11	Demonstrate beam properties at Wide Band Lab (Milestor	🔊. Nagaitsev	3/19/04	В
1.3.3.5.2.1	Pelletron extension parts received (Milestone)	J. Leibfritz/S. Nagaitse	v 1/1/04	С
1.3.3.5.6.1	Pelletron Installed at MI-31 (Milestone)	S. Nagaitsev	8/11/04	С
1.3.3.5.12	Electron Cooling Operational (Milestone)	J. Spalding	1/25/05	Α
1.3.3.6.7	Rapid Transfers Operational (Milestone)	J. Spalding	5/5/05	Α

Drivers

Cost

- > Accumulator Stacktail Upgrade
 - Travelling Wave Tubes
- > Electron Cooling
 - Pelletron (already purchased)
 - MI31 Civil construction (already underway)
 - Transfer line components
- > Rapid Transfers
 - Transfer lines 53 MHz BPM Upgrade

Schedule

- Accumulator Stacktail Upgrade
 - Procurement of the Traveling Wave Tubes
- > Electron cooling
 - Recycler commissioned for Electron Cooling
 - Electron beam properties measured at Wideband
 - Electron cooling installed at MI31

Antiproton stacking Goals

- Use of Debuncher, Accumulator, and Recycler
 - > Average Stacking Rate 40x1010 pbars/hour
 - > Stack at this rate for at least 15 hours
 - > Final Stack Parameters
 - Size = 625×10^{10} pbars
 - Transverse emittance < 15□-mm-mrad (95% normalized)
 - Longitudinal emittance < 50 eV-Sec